Освоение языковых моделей: подробный разбор входных параметров Мегапьютер
Сейчас для большинства существующих нейросетей, которые еще ничему не научились, требуется собирать датасет под каждую новую задачу и обучать их. А «Балабобе» достаточно показать несколько примеров и она выдаст нужный результат. Например, если мы хотим сгенерировать текст а-ля «Википедия», то достаточно загрузить в обучение несколько статей. Используйте перепроверку через надёжные источники, запрашивайте у модели обоснования и не стесняйтесь уточнять детали. Также, вы можете воспользоваться пятью способами улучшения ответов, приведенными ниже. Интересно, что модели часто "срезают углы" — упрощают сложные темы или дают чересчур обобщённые ответы. Мы разобрали пять работающих способов получать от языковых моделей более точные и осмысленные ответы. От того, как вы выстраиваете диалог с ИИ и насколько подробно описываете контекст, зависит качество результата. Как в любом профессиональном диалоге с языковой моделью, не удивляйтесь, если потребуются уточнения или придется возвращать беседу в нужное русло. Иногда необходимо дополнить контекст или https://paperswithcode.com переформулировать сложные вопросы с учетом специальных токенов.
Какие запросы работают лучше всего?
Инженер — прагматичный профессионал, который больше доверяет процессам обучения модели, чем людям. Научный офицер — молодой специалист по квантовой физике и моделям генерации текста, недавно обнаруживший странную аномалию в показаниях приборов. "Создай научно-фантастический рассказ, учитывая особенности обучения модели, объемом до 500 слов. Воспринимайте ответы ИИ как черновик или отправную точку для дальнейшей проверки. Особенно если речь идёт о важных решениях или требуется фактическая точность.
Импорт библиотек и набора данных
В отличие от реального мира, языковая модель позволяет нам напрямую измерить влияние возмущения на вероятность последующего события (как я делаю здесь, чтобы увидеть, как различные части запроса влияют на способность GPT-3 выполнять задачу). Этот метод имеет ограниченную область применения, поскольку он даёт только вероятность точного, заданного сценарием события. Если вероятность дословной последовательности является хорошим показателем того, что вы действительно хотите измерить, это удобный способ измерения импульсной реакции, поскольку он не требует многократных проб и дает точное значение. Но если вы хотите измерить влияние на конкретную переменную, позволяя при этом изменяться другим параметрам, или исследовать неограниченные последствия возмущения, вы должны опробовать мультивселенную посредством развёртываний. На практике семплирование с использованием top-p обычно дает более качественные результаты, чем top-k. Так как эта методика работает с кумулятивной вероятностью, она адаптируется к исходному контексту, предоставляя более гибкий подход к отсечению мусорных результатов. Также покажем, как именно LLM генерируют ответы и как они могут применяться в реальных задачах. Поэтому главная особенность обучения языковых моделей — необходимость в особенно тщательной и тонкой настройке обучающей стратегии, чтобы избежать ошибок. Третий метод основан на запросе к языковой модели о вероятностном распределении значений для колонок, вместо того чтобы запрашивать конкретные значения для каждой строки. Это более эффективный подход, так как позволяет снизить количество вызовов модели и уменьшить вычислительные затраты.
- Остается только дообучить их на специфических датасетах, например с помощью аугментации данных — это поможет решать специализированные задачи.
- При работе с моделью многие сталкиваются с неожиданным открытием — это не программирование, а живой диалог.
- Другие ветви быстро становятся декогерентными и развиваются отдельно, больше не наблюдаемые и не способные влиять на наш субъективный фрагмент мультивселенной.
- Автор также подчеркивает важность обогащения тренировочного набора данных примерами, где модель не только ошибается, но и успешно исправляет свои ошибки.
Как только это сделано, в словарь добавляются все символы из текста, ищутся самые частые их сочетания и снова добавляются. https://auslander.expert/ Этот процесс продолжается до тех пор, пока число токенов не станет равно заданному значению. Его принято аппроксимировать на основе корпуса текстов (например, всего интернета) — в этом случае считаются совстречаемости слов друг с другом, и по ним считаются вероятности. Языковые модели также широко применяются в переводе текстов, особенно когда требуется автоматический перевод с одного языка на другой. Модели поддерживают многоязычные системы, помогая пользователям общаться с людьми из разных стран. В недавней статье, сравнивающей полное дообучение и параметр-эффективное дообучение, говорится, что LoRA также служит естественной техникой регуляризации против катастрофического забывания во время полного дообучения [17]. В моих экспериментах LoRA дает лучшие результаты на моделях с как минимум 7B параметрами, в то время как мои попытки дообучить модель GPT-2 с 1.5B и 774M не дали достойных результатов. Самое свежее исследование применения LoRA решает проблему дообучения больших языковых моделей Mixture-of-Experts (MoE), дополняя отдельную подстройку маршрутизационной части архитектуры MoE [18]. Новое исследование EPFL проливает свет на внутренние механизмы обработки многоязычных данных в LLM, что критично для понимания принципов работы современных языковых моделей и их оптимизации. Исследователи применили метод Logit lens для анализа скрытых состояний в слоях моделей семейства Llama-2, чтобы понять, как происходит обработка инференса на разных языках. Code Interpreter, в свою очередь, позволяет запускать код Python прямо в интерфейсе чат-бота, с возможностью его использования для выполнения логических вычислений, а также для написания кода. Расстояние и направление между этими местами отражают сложные отношения между словами и понятиями. Эта карта настолько обширна, что даже комбинации, не встречающиеся непосредственно во время обучения, например Джек Николсон становится болельщиком «Пэйсерс», могут быть найдены, если двигаться в правильном «семантическом направлении». Именно так языковые модели поступают с суперсловами, которые они хранят в своих словарях. Слова, чьи координаты — или местоположение — находятся ближе друг к другу, более близки по смыслу. Но суперслова могут существовать и между любыми двумя точками на карте, так же как вы можете посетить любое место между, скажем, 1-й и 2-й улицами, даже если этот конкретный адрес на сетке не отмечен. На каждом шаге это скрытое состояние обновляется на основе текущего ввода и предыдущего скрытого состояния. Языковые модели в основном состоят из рекуррентных нейронных сетей (RNN). Языковые модели с их способностью понимать, синтезировать и даже воспроизводить человеческий язык легли в основу новаторских приложений, влияющих на наш цифровой опыт. Также, в RL символом обозначается вся последовательность токенов, то есть на практике сюда можно подставлять количество сгенерированных токенов. Также все few-shot-примеры стандартизуются в специальный формат вопрос — ответ, как на картинке выше. Так, в задачах CoLA (бенчмарк классификационный, в нём надо определить грамматическую корректность предложения) результат вырос до 45,4 против прежнего результата в 35,0 у RNN.